
MA 3046 - Matrix Algebra
Objectives

I. Introduction

This course provides students in the engineering and physical sciences curricula with an
applications-oriented coverage of the major topics of matrix and linear algebra. Principal
results will be examined not only from theoretical and geometric aspects, but also from the
perspective of how those results can actually be implemented numerically, and the relative
complexity and expected accuracy of that implementation.

II. Objectives

Upon successful completion of this course, one should be able to:

1. Define the standard inner product in Cn. Calculate standard inner products in Cn.
State the definitions of orthogonal and orthonormal vectors and sets in Cn. Describe
the relationships between orthonormal bases, the general coordinates of a vector in
terms of such a basis, and systems of linear equations.

2. State the definitions of the Hermitian (adjoint) of a matrix, and of Hermitian and
skew-Hermitian matrices. Describe how the these concepts simplify for the case of
real matrices.

3. State the definition of a Unitary matrix, and describe the relationship between unitary
matrices and orthonormal vectors.

4. Describe the general properties of any vector norm. Given an appropriate vector, find
kx k1, kx k2 and kx k∞. Describe how matrix norms are derived from corresponding
vector norms. Show that multiplication by unitary matrices preserves both Euclidean
vector and matrix norms, and the angles between vectors.

5. State the definition of the singular values of a matrix, and of the singular value de-
composition (SVD) of a matrix. Find the SVD for small, simple matrices. Describe
the relationships between the singular values of a matrix, the rank of that matrix, and
its Euclidean and Froebenius matrix norms. Describe when and how the SVD can be
used to construct low-rank approximations to a given matrix.

6. Describe the general characteristics of any finite-length, non-decimal, normalized float-
ing point number system, such as those commonly used to represent real numbers in
computers, and the primary errors and difficulties that can arise in matrix computa-
tions because of such representations.
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7. State the definition of a floating point operation (flop), and discuss the general factors
that influence the speed at which various computers may execute different flops. State
the approximate number of flops required for scalar multiplication, matrix addition,
matrix-vector multiplication and matrix-matrix multiplication. Determine approxi-
mately how many flops will be required by a given matrix or vector computation, and
whether and, if so, how that computation may be rewritten into a more flop-efficient
form.

8. Describe, in general, how both computer hardware and software architecture can sig-
nificantly impact the actual efficiency of matrix calculations. Specifically, define and
address the effects of serial versus parallel versus pipeline (vector) architectures, and
of cache, RAM and swap. Distinguish between complied and interpreted languages,
and row versus column-oriented storage, and their expected effects on matrix compu-
tations. Describe the general concept behind and expected utility of routines such as
the BLAS.

9. Program specific matrix and vector calculations in MATLAB so as to both approxi-
mately minimize the number of flops required, and to as utilize, efficiently as possible,
other MATLAB and hardware aspects.

10. State the definition of a projector and of an orthogonal projection, and describe the
relationships between projectors and complementary subspaces. Interpret both non-
orthogonal and orthogonal projectors geometrically in <2 and <3. Describe how gen-
eral projectors onto subspaces in Cn may be computed given appropriate bases, and
how these computations simplify for orthogonal projection, both with and without
orthonormal bases.

11. Use both the classic and modified Gram-Schmidt procedures to reduce an appropriate
linearly independent set to an orthonormal one, and to compute the QR factorization
of a given matrix. Describe why the modified procedure is generally superior.

12. Compute alternativeQR factorizations using both Householder reflections and Givens
rotations, and describe the advantages and disadvantages of these approaches versus
Gram-Schmidt.

13. State the approximate number of flops required to produce the QR factorization of a
given matrix by the Gram-Schmidt, Givens and Householder methods.

14. Describe the relationships between orthogonal projection, least-squares and Fourier
methods. Describe the basic concepts behind the normal equations for least squares,
and the limitations of the method. Apply the normal equations to solve a given
overdetermined system of linear equations. Describe the advantages of QR or the
SVD factorization over the normal equations for least squares problems.

15. Describe the general meaning of the terms stability and condition as they apply to
numerical computations. Describe, in general terms, the difference between an ill-
conditioned problem and an unstable algorithm. Identify which commonly-used algo-
rithms are unstable, conditionally stable and unconditionally stable.
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16. State the approximate number of flops required in Gaussian elimination to reduce
a matrix to upper triangular form, and to solve either an upper or lower triangular
system of equations.

17. Perform Gaussian elimination with a stated pivoting or scaling strategy to solve a
given system of linear equations, including correct simulation of the effects of floating-
point arithmetic.

18. Describe the PA=LU and Cholesky factorizations of a given matrix A, including the
differences between them and how they are related to Gaussian elimination and to
elementary matrices. Given an appropriate matrix, compute any of these factoriza-
tions, and use the results to solve the system Ax = b. Describe the advantages and
disadvantages of storing coefficient matrices in such factored forms.

19. Define the terms error, residual and condition number in the context of numerical
solution of systems of linear equations, and describe the relationships between them.

20. Describe iterative improvement (iterative refinement) as it applies the solution of
systems of linear equations, including the principle and assumptions underlying it,
and what one can learn from it. Simulate iterative improvement on a given system of
equations using a specified floating-point arithmetic.

21. Describe how the eigenvalues and eigenvectors of Hermitian, Unitary and Normal
matrices differ from those of general matrices.

22. State the definitions of Quadratic Form, and of Positive and Negative definite and
semi-definite. Describe the general properties of the eigenvalues and eigenvectors of a
quadratic forms, and how the eigenvalues relate to positive or negative definiteness.

23. Use basic, inverse or shifted inverse power method iteration to either find the largest
eigenvalue of a matrix or to refine estimates of other eigenvalues. Describe when and
why these methods should converge.

24. Describe how Householder reflections can be used to reduce a given matrix to upper
Hessenberg form. Apply them in appropriate cases. Describe how the QR algorithm
can be used to find the eigenvalues and eigenvectors of an upper Hessenberg matrix.

25. State the relation between eigenvalues, eigenvectors of a matrix and its SVD. Given
an appropriate matrix, use eigenvalue and eigenvector methods to find its SVD.

26. Describe and use the Jacobi, Gauss-Seidel and Successive Overrelaxation (SOR) itera-
tive methods for solving Ax = b; explain when such methods are used; give sufficient
conditions for convergence; and tell why SOR is usually superior to Gauss-Seidel,
which in turn is usually superior to Jacobi.
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27. Given library routines for the solution of the above problems as well as other utility
routines, be able to indicate how to use them in the solution of a larger problem
involving the solution of several ’subproblems’. For example

Assume that A is a large matrix. Using appropriate MATLAB
routines, write a program to find the smallest possible matrices U, V
and Σ, such that

kA−UΣVT k
kA k < .01

Apply this program to a random 100 × 100 matrix, and analyze its
performance in terms of both numerical efficiency and accuracy.

III. Assignments, Examinations and Grading

There will be one in-class hour exam (midterm) plus a comprehensive two-hour final.
All of these exams will be closed book, but one page (8 1/2 x 11) of notes (one side only)
may be brought to the midterm, and two pages to the final. The midterm will count for
approximately 15% of the total course grade, and the final for approximately 35%.

There will also be a number of in-class laboratories, designed to illustrate and empha-
size certain aspects of both software and algorithms. Many of these will be ungraded, but
some will require the student complete and turn in a scripted worksheet, which asks the
student to complete several rudimentary exercises, and compare the results to appropriate
theory. Most of these should be able to be completed during the scheduled laboratory time,
and most answers on them can be hand-written and should require not more than a sen-
tence or two. The combined grades on these laboratories will determine approximately 15%
of the course grade.

Finally, there will also be a number of graded projects. These will require completing
a report in which the student will be asked to write and critically analyze either their
own implementation of a appropriate algorithm or a program use existing, state-of-the-art
software to solve a reasonably realistic problem in engineering and scientific computation.
The combined grades on these projects will determine approximately 35% of the course
grade.

IV. Guidelines for Laboratory and Programming Assignments

All graded programming assignments should be essentially individual efforts. This
does not mean that students may not talk over with someone else how to attack the
problem, or consult them during check-out in an effort to find bugs - in fact both of
these are highly encouraged. However, each student must write the actual program code
and documentation themselves, since the grades on these assignments will be a significant
component of the course grades. Furthermore, whether students discuss the project with
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others or not, they should not turn in an assignment until the are personally comfortable
explaining exactly what they did and why.

Students should not hesitate to consult with the instructor regarding homework assign-
ments, programming practices, or when they can’t locate some elusive ”bug.” The purpose
of these assignments is to illustrate one or more features of the course work. Thus, I do
not expected that students will need to spend all of one or more nights trying to get a
simple program to run. (A good rule of thumb is 15-20 minutes - i.e. if a student has spent
that much time “spinning their wheels” and has no idea what is wrong with a program
or problem, etc., ask for help.) Lastly, since the programs are often designed to illustrate
various numerical phenomena, students should be especially careful to check their output
before they submit the project to see if they believe the answers they’ve computed.

V. Conclusion

The analysis of numerical methods and algorithms for matrices is important because
virtually all of the students in this course will use the computer methods to solve scientific
and engineering problems during their studies. For many of them, computational results
will constitute a major portion of their thesis. This course not only examines methods,
but also provides an opportunity to gain computational experience in the use of high-
quality library software through the programming assignments made during the course.
These assignments are designed to illustrate the theory and provide experience in obtain-
ing numerical solutions of engineering and scientific problems. In addition, some of the
assignments are used to exhibit common computational difficulties and ways of avoiding
them.
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